Skip to main content

Transformers

Transformers are the core mechanism for adapting API differences between LLM providers. They convert requests and responses between different formats, handle authentication, and manage provider-specific features.

Understanding Transformers

What is a Transformer?

A transformer is a plugin that:

  • Transforms requests from the unified format to provider-specific format
  • Transforms responses from provider format back to unified format
  • Handles authentication for provider APIs
  • Modifies requests to add or adjust parameters

Data Flow

┌─────────────────┐
│ Incoming Request│ (Anthropic format from Claude Code)
└────────┬────────┘


┌─────────────────────────────────┐
│ transformRequestOut │ ← Parse incoming request to unified format
└────────┬────────────────────────┘


┌─────────────────────────────────┐
│ UnifiedChatRequest │
└────────┬────────────────────────┘


┌─────────────────────────────────┐
│ transformRequestIn (optional) │ ← Modify unified request before sending
└────────┬────────────────────────┘


┌─────────────────────────────────┐
│ Provider API Call │
└────────┬────────────────────────┘


┌─────────────────────────────────┐
│ transformResponseIn (optional) │ ← Convert provider response to unified format
└────────┬────────────────────────┘


┌─────────────────────────────────┐
│ transformResponseOut (optional)│ ← Convert unified response to Anthropic format
└────────┬────────────────────────┘


┌─────────────────┐
│ Outgoing Response│ (Anthropic format to Claude Code)
└─────────────────┘

Transformer Interface

All transformers implement the following interface:

interface Transformer {
// Convert unified request to provider-specific format
transformRequestIn?: (
request: UnifiedChatRequest,
provider: LLMProvider,
context: TransformerContext
) => Promise<Record<string, any>>;

// Convert provider request to unified format
transformRequestOut?: (
request: any,
context: TransformerContext
) => Promise<UnifiedChatRequest>;

// Convert provider response to unified format
transformResponseIn?: (
response: Response,
context?: TransformerContext
) => Promise<Response>;

// Convert unified response to provider format
transformResponseOut?: (
response: Response,
context: TransformerContext
) => Promise<Response>;

// Custom endpoint path (optional)
endPoint?: string;

// Transformer name (for custom transformers)
name?: string;

// Custom authentication handler (optional)
auth?: (
request: any,
provider: LLMProvider,
context: TransformerContext
) => Promise<any>;

// Logger instance (auto-injected)
logger?: any;
}

Key Types

UnifiedChatRequest

interface UnifiedChatRequest {
messages: UnifiedMessage[];
model: string;
max_tokens?: number;
temperature?: number;
stream?: boolean;
tools?: UnifiedTool[];
tool_choice?: any;
reasoning?: {
effort?: ThinkLevel; // "none" | "low" | "medium" | "high"
max_tokens?: number;
enabled?: boolean;
};
}

UnifiedMessage

interface UnifiedMessage {
role: "user" | "assistant" | "system" | "tool";
content: string | null | MessageContent[];
tool_calls?: Array<{
id: string;
type: "function";
function: {
name: string;
arguments: string;
};
}>;
tool_call_id?: string;
thinking?: {
content: string;
signature?: string;
};
}

Built-in Transformers

anthropic

Transforms requests to be compatible with Anthropic-style APIs:

{
"transformers": [
{
"name": "anthropic",
"providers": ["deepseek", "groq"]
}
]
}

Features:

  • Converts Anthropic message format to/from OpenAI format
  • Handles tool calls and tool results
  • Supports thinking/reasoning content blocks
  • Manages streaming responses

deepseek

Specialized transformer for DeepSeek API:

{
"transformers": [
{
"name": "deepseek",
"providers": ["deepseek"]
}
]
}

Features:

  • DeepSeek-specific reasoning format
  • Handles reasoning_content in responses
  • Supports thinking budget tokens

gemini

Transformer for Google Gemini API:

{
"transformers": [
{
"name": "gemini",
"providers": ["gemini"]
}
]
}

maxtoken

Limits max_tokens in requests:

{
"transformers": [
{
"name": "maxtoken",
"options": {
"max_tokens": 8192
},
"models": ["deepseek,deepseek-chat"]
}
]
}

customparams

Injects custom parameters into requests:

{
"transformers": [
{
"name": "customparams",
"options": {
"include_reasoning": true,
"custom_header": "value"
}
}
]
}

Creating Custom Transformers

Simple Transformer: Modifying Requests

The simplest transformers just modify the request before it's sent to the provider.

Example: Add a custom header to all requests

// custom-header-transformer.js
module.exports = class CustomHeaderTransformer {
name = 'custom-header';

constructor(options) {
this.headerName = options?.headerName || 'X-Custom-Header';
this.headerValue = options?.headerValue || 'default-value';
}

async transformRequestIn(request, provider, context) {
// Add custom header (will be used by auth method)
request._customHeaders = {
[this.headerName]: this.headerValue
};
return request;
}

async auth(request, provider) {
const headers = {
'authorization': `Bearer ${provider.apiKey}`,
...request._customHeaders
};
return {
body: request,
config: { headers }
};
}
};

Usage in config:

{
"transformers": [
{
"name": "custom-header",
"path": "/path/to/custom-header-transformer.js",
"options": {
"headerName": "X-My-Header",
"headerValue": "my-value"
}
}
]
}

Intermediate Transformer: Request/Response Conversion

This example shows how to convert between different API formats.

Example: Mock API format transformer

// mockapi-transformer.js
module.exports = class MockAPITransformer {
name = 'mockapi';
endPoint = '/v1/chat'; // Custom endpoint

// Convert from MockAPI format to unified format
async transformRequestOut(request, context) {
const messages = request.conversation.map(msg => ({
role: msg.sender,
content: msg.text
}));

return {
messages,
model: request.model_id,
max_tokens: request.max_tokens,
temperature: request.temp
};
}

// Convert from unified format to MockAPI format
async transformRequestIn(request, provider, context) {
return {
model_id: request.model,
conversation: request.messages.map(msg => ({
sender: msg.role,
text: typeof msg.content === 'string' ? msg.content : JSON.stringify(msg.content)
})),
max_tokens: request.max_tokens || 4096,
temp: request.temperature || 0.7
};
}

// Convert MockAPI response to unified format
async transformResponseIn(response, context) {
const data = await response.json();

const unifiedResponse = {
id: data.request_id,
object: 'chat.completion',
created: data.timestamp,
model: data.model,
choices: [{
index: 0,
message: {
role: 'assistant',
content: data.reply.text
},
finish_reason: data.stop_reason
}],
usage: {
prompt_tokens: data.tokens.input,
completion_tokens: data.tokens.output,
total_tokens: data.tokens.input + data.tokens.output
}
};

return new Response(JSON.stringify(unifiedResponse), {
status: response.status,
statusText: response.statusText,
headers: { 'Content-Type': 'application/json' }
});
}
};

Advanced Transformer: Streaming Response Processing

This example shows how to handle streaming responses.

Example: Add custom metadata to streaming responses

// streaming-metadata-transformer.js
module.exports = class StreamingMetadataTransformer {
name = 'streaming-metadata';

constructor(options) {
this.metadata = options?.metadata || {};
this.logger = null; // Will be injected by the system
}

async transformResponseOut(response, context) {
const contentType = response.headers.get('Content-Type');

// Handle streaming response
if (contentType?.includes('text/event-stream')) {
return this.transformStream(response, context);
}

// Handle non-streaming response
return response;
}

async transformStream(response, context) {
const decoder = new TextDecoder();
const encoder = new TextEncoder();

const transformedStream = new ReadableStream({
start: async (controller) => {
const reader = response.body.getReader();
let buffer = '';

try {
while (true) {
const { done, value } = await reader.read();
if (done) break;

buffer += decoder.decode(value, { stream: true });
const lines = buffer.split('\n');
buffer = lines.pop() || '';

for (const line of lines) {
if (!line.trim() || !line.startsWith('data: ')) {
controller.enqueue(encoder.encode(line + '\n'));
continue;
}

const data = line.slice(6).trim();
if (data === '[DONE]') {
controller.enqueue(encoder.encode(line + '\n'));
continue;
}

try {
const chunk = JSON.parse(data);

// Add custom metadata
if (chunk.choices && chunk.choices[0]) {
chunk.choices[0].metadata = this.metadata;
}

// Log for debugging
this.logger?.debug({
chunk,
context: context.req.id
}, 'Transformed streaming chunk');

const modifiedLine = `data: ${JSON.stringify(chunk)}\n\n`;
controller.enqueue(encoder.encode(modifiedLine));
} catch (parseError) {
// If parsing fails, pass through original line
controller.enqueue(encoder.encode(line + '\n'));
}
}
}
} catch (error) {
this.logger?.error({ error }, 'Stream transformation error');
controller.error(error);
} finally {
controller.close();
reader.releaseLock();
}
}
});

return new Response(transformedStream, {
status: response.status,
statusText: response.statusText,
headers: {
'Content-Type': 'text/event-stream',
'Cache-Control': 'no-cache',
'Connection': 'keep-alive'
}
});
}
};

Real-World Example: Reasoning Content Transformer

This is based on the actual reasoning.transformer.ts from the codebase.

// reasoning-transformer.ts
import { Transformer, TransformerOptions } from "@musistudio/llms";

export class ReasoningTransformer implements Transformer {
static TransformerName = "reasoning";
enable: boolean;

constructor(private readonly options?: TransformerOptions) {
this.enable = this.options?.enable ?? true;
}

// Transform request to add reasoning parameters
async transformRequestIn(request: UnifiedChatRequest): Promise<UnifiedChatRequest> {
if (!this.enable) {
request.thinking = {
type: "disabled",
budget_tokens: -1,
};
request.enable_thinking = false;
return request;
}

if (request.reasoning) {
request.thinking = {
type: "enabled",
budget_tokens: request.reasoning.max_tokens,
};
request.enable_thinking = true;
}
return request;
}

// Transform response to convert reasoning_content to thinking format
async transformResponseOut(response: Response): Promise<Response> {
if (!this.enable) return response;

const contentType = response.headers.get("Content-Type");

// Handle non-streaming response
if (contentType?.includes("application/json")) {
const jsonResponse = await response.json();
if (jsonResponse.choices[0]?.message.reasoning_content) {
jsonResponse.thinking = {
content: jsonResponse.choices[0].message.reasoning_content
};
}
return new Response(JSON.stringify(jsonResponse), {
status: response.status,
statusText: response.statusText,
headers: response.headers,
});
}

// Handle streaming response
if (contentType?.includes("stream")) {
// [Streaming transformation code here]
// See the full implementation in the codebase
}

return response;
}
}

Transformer Registration

Method 1: Static Name (Class-based)

Use this when creating a transformer in TypeScript/ES6:

export class MyTransformer implements Transformer {
static TransformerName = "my-transformer";

async transformRequestIn(request: UnifiedChatRequest): Promise<any> {
// Transformation logic
return request;
}
}

Method 2: Instance Name (Instance-based)

Use this for JavaScript transformers:

module.exports = class MyTransformer {
constructor(options) {
this.name = 'my-transformer';
this.options = options;
}

async transformRequestIn(request, provider, context) {
// Transformation logic
return request;
}
};

Applying Transformers

Global Application (Provider Level)

Apply to all requests for a provider:

{
"Providers": [
{
"NAME": "deepseek",
"HOST": "https://api.deepseek.com",
"APIKEY": "your-api-key",
"transformers": ["anthropic"]
}
]
}

Model-Specific Application

Apply to specific models only:

{
"transformers": [
{
"name": "maxtoken",
"options": {
"max_tokens": 8192
},
"models": ["deepseek,deepseek-chat"]
}
]
}

Note: The model format is provider,model (e.g., deepseek,deepseek-chat).

Global Transformers (All Providers)

Apply transformers to all providers:

{
"transformers": [
{
"name": "custom-logger",
"path": "/path/to/custom-logger.js"
}
]
}

Passing Options

Some transformers accept configuration options:

{
"transformers": [
{
"name": "maxtoken",
"options": {
"max_tokens": 8192
}
},
{
"name": "customparams",
"options": {
"custom_param_1": "value1",
"custom_param_2": 42
}
}
]
}

Best Practices

1. Immutability

Always create new objects rather than mutating existing ones:

// Bad
async transformRequestIn(request) {
request.max_tokens = 4096;
return request;
}

// Good
async transformRequestIn(request) {
return {
...request,
max_tokens: request.max_tokens || 4096
};
}

2. Error Handling

Always handle errors gracefully:

async transformResponseIn(response) {
try {
const data = await response.json();
// Process data
return new Response(JSON.stringify(processedData), {
status: response.status,
headers: response.headers
});
} catch (error) {
this.logger?.error({ error }, 'Transformation failed');
// Return original response if transformation fails
return response;
}
}

3. Logging

Use the injected logger for debugging:

async transformRequestIn(request, provider, context) {
this.logger?.debug({
model: request.model,
provider: provider.name
}, 'Transforming request');

// Your transformation logic

return modifiedRequest;
}

4. Stream Handling

When handling streams, always:

  • Use a buffer to handle incomplete chunks
  • Properly release the reader lock
  • Handle errors in the stream
  • Close the controller when done
const transformedStream = new ReadableStream({
start: async (controller) => {
const reader = response.body.getReader();
let buffer = '';

try {
while (true) {
const { done, value } = await reader.read();
if (done) break;

// Process stream...
}
} catch (error) {
controller.error(error);
} finally {
controller.close();
reader.releaseLock();
}
}
});

5. Context Usage

The context parameter contains useful information:

async transformRequestIn(request, provider, context) {
// Access request ID
const requestId = context.req.id;

// Access original request
const originalRequest = context.req.original;

// Your transformation logic
}

Testing Your Transformer

Manual Testing

  1. Add your transformer to the config
  2. Start the server: ccr restart
  3. Check logs: tail -f ~/.claude-code-router/logs/ccr-*.log
  4. Make a test request
  5. Verify the output

Debug Tips

  • Add logging to track transformation steps
  • Test with both streaming and non-streaming requests
  • Verify error handling with invalid inputs
  • Check that original responses are returned on error

Next Steps